Image Decomposition on the basis of an Inverse Pyramid with 3-layer Neural Networks
نویسندگان
چکیده
The contemporary information technologies and Internet impose high requirements on the image compression efficiency. Great number of methods for information redundancy reduction had already been developed, which are based on the image processing in the spatial or spectrum domain. Other methods for image compression use some kinds of neural networks. In spite of their potentialities, the methods from the last group do not offer high compression efficiency. New adaptive method for Image Decomposition on the basis of an Inverse Pyramid with Neural Networks is presented in this paper. The processed image is divided in blocks and then each is compressed in the space of the hidden layers of 3-layer BPNNs, which build the so-called Inverse Difference Pyramid. The results of the new method modeling are presented for sequence of static images in comparison with results for single images from the same group.
منابع مشابه
Non-Linear Image Representation Based on IDP with NN
In this paper is offered a method for non-linear still image representation based on pyramidal decomposition with a neural network. This approach is developed by analogy with the hypothesis for the way humans do image recognition using consecutive approximations with increasing similarity. A hierarchical decomposition, named Inverse Difference Pyramid (IDP), is used for the image representation...
متن کاملAn Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملComparison Study on Neural Networks in Damage Detection of Steel Truss Bridge
This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...
متن کاملKinematic Synthesis of Parallel Manipulator via Neural Network Approach
In this research, Artificial Neural Networks (ANNs) have been used as a powerful tool to solve the inverse kinematic equations of a parallel robot. For this purpose, we have developed the kinematic equations of a Tricept parallel kinematic mechanism with two rotational and one translational degrees of freedom (DoF). Using the analytical method, the inverse kinematic equations are solved for spe...
متن کاملThe Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)
Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008